
AM(z), mass of substance absorbed on the section z - z + Az of the gas-liquid layer, kg; k = 
u/v, slope tangent of velocity vector to the vertical axis; V0, velocity of flow on the axis 
of the secondary eddy, m/sec; vi, tangential velocity on the boundary of the eddy, m/sec; W, 
corrected velocity of gas across the reaction zone, m/sec; r = (r - D0/2)/&R, dimensionless 
coordinate reckoned from the wall of the gas-conducting tube. 

lo 
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3. 
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THE HYDROMECHANICS OF SUSPENSIONS 

Yu. A. Buevich, A. Yu. Zubarev, and A. M. Isaev UDC 532.545 

Thermodynamic forces are introduced into the momentum conservation equations for 
the phases of a monodisperse suspension of fine particles in order to permit ef- 
fective description of the presence of diffusion processes in flows, thus cir- 
cumventing the main difficulty encountered in the hydromechanics of suspensions. 

The phases in flows of suspensions and other disperse systems undergo convective and 
diffusional redistribution, resulting in the formation of completely determined fields of 
concentration of the suspended particles. The concentration field, as the fields of mean pres- 
sure and mean velocity of the phases, is an unknown function. All of these unknowns should 
be determined simultaneously from the solution of the boundary-value problem corresponding to 
the given flow for the system of equations of the hydromechanics of disperse systems. 

In actuality, in the overwhelming majority of specific situations the system of hydro- 
dynamic equations traditionally used for suspensions does not have physically admissible solu- 
tions. Thus, the flows are approximately described at the cost of completely ignoring some 
of these equations and postulating certain a priori and usually poorly-substantiated assump- 
tions regarding the character of the concentration distribution. 

Below, we will limit ourselves to analyzing a finely-dispersed medium with identical 
particZes. The medium is not necessarily uniform in the macroscopic sense. We write the 
system of conservation equations for its phases in the form [i]: 

edo (o/at + v v )  v = - -  v p  + v ( ~ v v )  - -  f - -  edoV H, 

pd 1 (o/at + w v ) w  = f -  PdlVII, 

de/or + V (ev) = O, Op/Ot H- V (pv) = O. 

(1) 

Adding these equations in pairs, we can also obtain the momentum and mass conservation 
equations for the suspension as a whole. 

The phase interaction force, calculated per unit volume, is usually represented in the 
following form for sufficiently small particles 

f ~ fA + ~S + fB -JF fF -[- fl' (2)  

where the components in the right side describe the effective forces associated with buoyancy 
(Archimedes force), viscous interaction (Stokes force), the Basse force, the Faxon force, and 
the inertial force connected with acceleration of the apparent additional mass of the fluid 
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when the velocity of the disperse phase changes. The variants of Eq. (i) proposed in the 
literature differ basically in the expressions adopted for the force components (2) (see the 
survey in [2], for example). The properties of the solutions obtained may depend signifi- 
cantly (the opinions of some investigators [2] notwithstanding) on the Specific form of these 
expressions (this applies in particular to whether fA is represented through the gradient of 
mean pressure or directly through the gradient of the potential of the external field). The 
study [i] obtained consistent relations for all of the force components in (2) in the flow 
of a macroscopically uniform suspension of identical small spheres of moderate concentration, 
as well as for the effective viscosity of this suspension [i]: 

0 fA = Pd [hI] + --~- + wv) 

fe  = ~ P  ~ a 2 / 

w , f s - - - - ~ O M  ( v - - w ) ' ,  

[F=~-pMI%Av, f~=--2 p(1--p) l + p  ~ M  
/ 

Xdo 0 _r (v--w), ~=Ml~o, M(p)---- 1--5p/-------2' 

d = ed o -+- pd t. 

X 

(3) 

Equation (2) does not consider the nonlinear components of the phase interaction force 
connected with nonuniformity of the phase-velocity fields and particle rotation. These forces 
are small for dispersions with sufficiently small particles. However, allowing for them be- 
comes fundamentally important when the other components in (2) vanish - as occurs, for exam- 
ple, in the flow of suspensions in vertical channels. 

Let us write the equations which describe the steady uniform flow of a suspension in an 
inclined plane channel of constant cross section in a gravitational field (we direct the 
longitudinal x and transverse y axes along the corresponding components of the vectorg = 
-VH). We follow the usual procedure to obtain two equations from (1-3). These two equations 
follow from the x-components of the momentum conservation equations of the suspension and 
its disperse phase: 

d (MdV / ap 
~o --~y ~ "-~f ] - -  -~x + dg sin ~ = O, (4) 

p~M (v  - -  ~ )  + p (1 - -  p)(d~ - -  do) g s i n  a = O, ~ = 9~o/2a 2, 

while 8p/Sx is regarded as constant. It can readily be seen from this that Eqs. (4) determine 
the distribution of the mean velocities of the phases v = v x and w = w x with an arbitrary 
distribution of the concentration of the suspension in a section in which these equations 
are in principle incapable of describing the flow. Also, we actually ignored the y-component 
of the momentum conservation equation of the disperse phase, which in the present case has 
the form 

p ( l - -  p)(d~ - -  do) g c o s  ~ = 0.  ( 5 )  

This equation is obviously satisfied only in the trivial cases cos ~ = 0 or d I = d 0. It 
becomes clear that system (i) has no steady-state solution for a suspension of particles (as 
opposed to a packed layer of particles) in the case of flow of the type being examined here. 
The unsteady analog of Eq. (5) would simply describe settling of the particles (at d I > d o ) 
on the bottom of the channel. 

Such settling, leading to the formation of a nonuniform concentration profile in the 
channel and then in the deposited layer, prevents the suspended particles from forming a dif- 
fusion flow in the direction opposite the concentration gradient. Under steady-state condi- 
tions, a concentration distribution is established such that this diffusion flow exactly com- 
pensates for the counter-directed convection of particles and their deposition in a gravita- 
tional field under the influence of the force written in (5). 
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In principle, the diffusional movement of particles is the result of their random fluc- 
tuating motion, which can in turn be due to sharply different physical causes. Only Brownian 
motion is actually important for colloidal dispersions, this motion having been subjected to 
detailed analysis [3] in dilute dispersions. In flows of finely-dispersed suspensions, anise- 
tropic diffusion becomes important in addition to Brownian diffusion. Anisotropic diffusion 
is attributable to specific pseudo-turbulent motion. A relatively simple theory of this type 
of diffusion was proposed in [4]. The energy for the pseudo-turbulence is supplied by the 
work of the mean relative flow of the carrier phase on fluctuations of suspension concentra- 
tion, and the role of pseudo-turbulence increases rapidly with an increase in particle size. 
Ultimately, of course, the ordinary turbulent diffusion of the suspended particles is the 
most important factor in turbulent flows of suspensions. 

Attempts were made in [5, 6] to improve the equations of hydromechanics of suspensions 
by explicitly introducing diffusion flows into the mass conservation equations for the phases. 
These attempts were basically unsound, as indicated by I. G. Shaposhnikov in [7]. The error 
arises from the fact that these equations contain the mean mass phase velocities, so that the 
quantities ev and pw in (i) describe the total mass flows - regardless of their origins. 

However, the diffusion effects being discussed can be described by using the main idea 
underlying the well-known Einstein method. In accordance with this notion, the diffusion 
flow is the same as would exist if a particle were acted upon by a certain force proportional 
to the concentration gradient. Such a force characterizes the actual rate of approach of 
the system to equilibrium and is usually termed the thermodynamic force. It was used success- 
fully by Batchelor [3] to describe the Brownian diffusion of particles in dilute monodisperse 
suspensions. In the flow in an inclined channel examined above, this force was introduced 
into Eq. (5) together with gravity and buoyancy. In this case, (5) changes to an equation 
which can not only be satisfied, but which also determines the particle distribution in the 
cross section of the channel. 

To calculate the thermodynamic force in the general case, we will use the method in [3] 
and generalize it to concentrated systems and to situations involving anisotropic fluctuating 
motion. It follows from the requirement of uniformity of the chemical potential ~ of a par- 
ticle in an equilibrium system located in an external field of body forces that the external 
force acting on the particle must be balanced by the thermodynamic force H=--V~(n, p, T). 
Limiting ourselves to analysis of isothermal flows, we have 

O~ O~ 

The derivative (O~/Op)n.T is equal to the volume of the particle, so the last term in 
this relation simply describes the buoyant force in the equilibrium system that corresponds 
to the determination of fA in (3). Since this force has no relation to diffusion processes 
even in the situations, already accounted for in (2), that differ substantially from equi- 
librium, we see that we should use the following as the sought thermodynamic force acting on 
a single particle: 

w. H . . . .  - - ~ n p ,  r . , 

As was shown in [3], the corresponding thermodynamic force acting on one molecule of 
liquid under the same conditions is equal to 

p, T nO 

I n t r o d u c i n g  t h e  a n a l o g o u s  f o r c e s  a p p l i e d  t o  t h e  p a r t i c l e s  and l i q u i d  in  a u n i t  Volume 
o f  t h e  d i s p e r s i o n ,  we see  t h a t  t h e  thermodynamic  f o r c e  can be r e g a r d e d  e s s e n t i a l l y  as one 
component of  t h e  phase  i n t e r a c t i o n  f o r c e  m a n i f e s t  in  a m a c r o s c o p i c a l l y  nonun i fo rm d i s p e r s i o n  
and no t  c o n s i d e r e d  in  ( 2 ) .  Thus,  t h e  c o n s e r v a t i o n  e q u a t i o n s  (1)  r e t a i n  t h e i r  form,  bu t  t h e  
expression for f in (2) must be replaced by 

f=fA-[- f sq- fB- l - fFq- fZ-]- f r '  f r = - - n  ~ p,r V \,-~P lp,r 
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(here, we used the identity nH------n0H0). 

To close the system of equations of the hydromechanics of suspensions, it is necessary 
to find an explicit expression for ~ and then for fT through the unknowns of this system. 
First let us examine the situation when only isotropic Brownian motion of the particles is 
important. This situation is characteristic of colloidal dispersions. The calculations are 
elementary for a limitingly dilute dispersion, and the expression for ~ formally coincides 
with the same expression for an ideal gas consisting of noninteracting particles. In this 
case, we have ~=~~ p--p), where a~~ For dispersions that are close to dilute, 
we can use the standard form of the method of group expansions [8]. If we restrict ourselves 
to allowing only for the second virial coefficient, we obtain the result in [3]. In accor- 
dance with the latter, the term 8kTp is added to ~. There is no rigorous theory for disper- 
sions of high concentration, so it is best to resort to one of the approximate theories of 
the statistical physics of dense gases and liquids. Preference should be given to the Per- 
kins-Yevick theory, since the equations of this theory permit an analytical description for 
a gas of hard spheres [9]. Using the semi-empirical Carnahan-Starling variant of this theory 
for the sake of definiteness [9, i0], we write the equation of state of such a gas in the 
form 

PV=NkTG(p), G =  1 J r p + p Z - - p 3  V - -  vN (7 )  
(i -- p)3 p 

where P and V are the pressure and volume of the gas; N is the total number of particles. 
The dependence of G on p is shown in Fig. i; it agrees well with the numerical results ob- 
tained by the method of molecular dynamics [9]. The value G = 1 corresponds to an ideal gas. 

The chemical potential of a spherical particle differs from the above-cited value for 
an ideal gas by the amount ~ = -kTSln QN/aN, where QN is the configurational integral re- 
ferred to V N for the gas being examined. Differentiation is performed with constant T and 
the total number N O of liquid molecules in the system. The requirement that N O be constant 
is very important: the result obtained for ~ must apply to one of the particles of the sys- 
tem surrounded by liquid molecules, not to a sphere of gas consisting of identical hard 
spheres that do not contain liquid [3]. It can be argued that molecules of a dissolved subs- 
tance are a closer analog of suspended particles than a one-component gas. 

The value of QN is most easily calculated by considering that the right side of equation 
of state (7) is by definition equal to kTVSInVNQN)/aV. From here, we successively obtain 

O ln(VXQx) _ N G, O lnQtr N (G--l), 
OV V OV V 

P G - - 1  OInQN =- -N  G--1 , lnQN - - N j ' - - d p ,  
ap p o P 

and then 

01nQN ) ~, O - - 1  

ON P,T,No 0 P 

C o n s i d e r i n g  t h e  e x p r e s s i o n  f o r  G f rom (7)  
v0N0) -1 and ,  t h u s ,  ( S g / a N ) p , T , N  ~ = p(1 - p ) /N ,  

0 In Qv 

ON )p,T,No 
so that the final representation for ~ has the 

= ~~ + kTY ( p ) ,  F - 

dg--N G--1 i OP ) 
~) --'~'N" P,T,No 

and t h e  f a c t  t h a t  p can  be e x p r e s s e d  as  vN(vN + 
we write; 

8 -- 5p 
- P ( 1  - p)~ ' 

form 

8 - -  5p 
Inp - -  p -}- p - -  (8) 

(I -- p)~ ' 

which determines the thermodynamic force. The dependence of F on O is also shown in Fig. i. 

Thus, we have made the necessary generalization to concentrated dispersions subjected 
to Brownian motion. The above-calculated addition ~ to the chemical potential of the 

1033 



particles of an ideal gas describes the effect of purely geometric factors due to the influ- 
ence of the excluded volume, i.e., due to the reduction in the fraction of the volume acces- 
sible to particles in a concentrated system. 

The thermodynamic force IT can also be written in the form-V(JP), where J is a yet-to- 
be-determined function of p. Comparing this expression with P from (7) and comparing the 
representation for [T from (6) with ~ from (8), we arrive at the equation d(pJG)/Sp = pdF/dp. 
From this 

i p dF d9 o .[ Fdp. 9JG = .  9--~p-p = PF Io--o 
0 

Performing calculations with G and F from (7) and (8), we obtain: 

L = J G  2 l n ( 1 - - 9 )  + 3  1 - - 2 9  9 1 5 - - 8 p - - 9  z 

P 1 - - 9  2 (1 - - 9 )  2 (9 )  

J = (1 - -  9)~(1 -+- 9 q- PZ--P3) -~L. 

At p + 0, we have L + i, J + i. Thus, considering that kT = m < w'.2>, where w I is one 
of the components of fluctuation velocity, we have the following in a d11ute dlsperszon 

fT -+ -- V P -~  -- V [(9/v) kTl = -- V (d19 < w/~> ), 

i . e . ,  we o b t a i n  a f a m i l i a r  ( and  c o m p l e t e l y  n a t u r a l )  r e p r e s e n t a t i o n  f o r  t h i s  f o r c e  in  t e r m s  o f  
t h e  e f f e c t i v e  p r e s s u r e  o f  an i d e a l  g a s  o f  s u s p e n d e d  p a r t i c l e s  t o  c h a r a c t e r i z e  t h e  momentum 
f l u x  o f  t h e  d i s p e r s e  p h a s e  due t o  i t s  f l u c t u a t i n g  m o t i o n .  Fo r  a c o n c e n t r a t e d  d i s p e r s i o n ,  we 
can  w r i t e  

t ~ r 2  

P=dlPG <wi >, [ T = - - v ( J P ) = - - v ( d l p L  <w i >). (10) 

These formulas link the pressure and thermodynamic force directly with the mean squares 
of the components of fluctuation velocity. Thus, the presence of the effects of the excluded 
volume in a concentrated dispersion lead to increases in both the pressure of the system of 
suspended particles and the thermodynamic force acting on them compared to the values of 
these two quantities that correspond to an ideal gas. The increase in pressure due to crowd- 
ing is well known for dense gases and is usually described by introducing the concentration- 
dependent Enskog multiplier X [ii] into the equation of state. This multiplier is formally 
determined from the equality I + 4px = G. An additional multiplier J appears with P in the 
expression for IT in the approximation being considered. Figure i also shows the depen- 
dences of J and L on p corresponding to (9). The difference of J from unity is connected 
with the fact that the presence of liquid in the interstices between particles causes the 
effective properties of the system of suspended particles to differ from the properties of 
the analogous gas [3]. Another factor in the deviation from unity is the fact that the model 
being used is approximate [i0]. 

In tensor form, Eqs. (I0) can be represented as: 

Pij = ~pG < wiwi > , ( I  i )  

a (sPij) - a (~gL < ~ , ~  > ), 

while for Brownian motion PZj = P6ij" Equations (ii) make it possible to generalize the 
theory to situations in which the particle fluctuations are due to factors other than just 
Brownian motion and are not necessarily isotropic. 

In fact, the functions G, J, and L describe the manner in which the effective thermo- 
dynamic characteristics of a system of suspended particles are influenced by purely geometric 
factors, i.e., the presence of excluded volume and the associated crowding. In a first ap- 
proximat$on, they should be independent of the origin and characteristics of the fluctuating 
motion of the particles if the fluctuations of adjacent particles are not correlative. Given 
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! ! 
this situation, Eqs. (ii) are still valid, as if the tensor <wiwj> of random fluctuating 
m o t i o n  d i d  n o t  e x i s t .  

If the particle fluctuations are pseudo-turbulent in character and Brownian motion can 
be ignored, then the tensor <w~w~> is diagonal and axisyn~netric in a coordinate system in 

J 

which one axis is directed along u=v--w; the principal values of this tensor were calculated 
in [4]* 

Now let us examine disperse systems in which Brownian motion and pseudo-turbulence are 
simultaneously important. In this case, fluctuation velocity can be represented in the form 
w'=w(b)+ w(P). The physical mechanisms responsible for generating fluctuations of these two 
types w(b) and w(p) are completely different and are independent of one another. This immedi- 
ately leads us to the equality 

�9 , ~ (P )  ,(p) 
< ~iw/> =(kT/m)Si: ~- < ~i ~i  >, (12) 

which should also be used in (Ii). Thus, a solution has been found for the problem of deter- 
mining the thermodynamic force in flows of monodisperse media with sufficiently fine spherical 
particles. 

Let us take a closer look at the particle diffusion caused by Brownian and pseudo-tur- 
bulent motion. Here, we should differentiate between self-diffusion - which also takes place 
in microscopically uniform suspensions and describes the average mixing of the particles rela- 
tive to their nearest neighbors - and gradient diffusion - which occurs in macroscopically 
nonuniform dispersions and leads to a nontrivial mean flow of the disperse phase [3]. Coef- 
ficients of self-diffusion were calculated in [4] for conditions under which Brownian motion 
can be ignored. 

For simplicity, we will assume that a particle moving relative to its neighboring par- 
ticles in a macroscopically uniform dispersion is acted upon by a force whose components are 
dependent on concentration in a manner similar to (3). The linearity of the equation of fluc- 
tuating motion obviously allows us to examine w(b) and w(P) separately. With allowance for 
(3), we have the following Lagrangian equation for Brownian motion (we will use a coordinate 
system connected with the mean motion of the dispersion - when the convective inertial terms 
can be ignored - and we will take v(b) = 0). 

+6~ttoaA//w - -  R {w (b) } = A, : (1 - -  p) dl + ~ -q- 3p - -  M 

I \ v i d w ' -  dr (13) 

Here, A is an isotropic random force having the spectral properties of white noise, m(b) 
serves as the effective mass of a particle with allowance for the apparent additional mass 
and effects connected with the frequency dispersion of viscosity (accounted for in the force 
f~ in (3) [i]); R{w (b)} is a functional which describes the effective hereditary Basse force. 
In the equation for the velocity w(P) of fine particles which is analogous to (13), it turns 
out to be possible to use a noninertial approximation, i.e., to ignore all of the components 

*In these discussions, the hypothesis of the statistical independence of the random forces 
acting on different particles is important. In pseudo-turbulent motion, these forces are 
generated by a change in the hydrodynamic situation (by concentration fluctuations) in the 
neighborhood of the particles. This hypothesis is approximately valid if the linear scale 
of the fluctuations is on the order of the mean distance between adjacent particles. The 
study [4] examined motion of this type, which is seen for fairly finely-dispersed suspensions. 
An increase in particle size and the difference in the densities of the phases are accompanied 
by the occurrence of correlated fluctuating motion of groups of large numbers of particles 
and the corresponding large-scale fluctuations (up to the point where gas bubbles are formed 
in the pseudo-fluidized layers). The theory currently being developed is ultimately inade- 
quate for such flows. This theory must also be invalid for turbulent flows of liquid and 
gas suspensions in which the scale of the fluctuations is determined by the turbulence struc- 

te ' ' ture. In these flows, with large-scale irregularities, the nsors <vivj> and <wiwj> are introduced 
into the theory by averaging the momentum conservation equations of the phases and are used 
to determine the corresponding Reynolds stresses. 
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of the total force except the viscous component [4]. This cannot be done for w(b) since the 
characteristic frequency of this random function cannot be considered small. 

We use a standard method and represent w(b) and A in the form of stochastic Fourier- 
Stieltjes integrals, as was done in [4] for pseudo-turbulent random variables. Here (just to 
simplify the calculations), we ignore the force R{w(b)}, We can do this because this force 
can be regarded as small in the ranges of frequency ~ in which one of the two forces-viscous 
and inertial - remaining in the left side of (13) will be much larger than the other. Then 
we use (13) to obtain the following for the random measures dZ ~) and dZx in the stochastic 
integrals: 

(loom (0 + 6~oaM ) dZ~! = dZA 

and we have the corresponding relation for the spectral densities of the random processes 

w (b) and A (compare with [4]): 

(b) 6a~xoaM/m (b) ~ Ai Ai (co) ~,i,~,j (o)) = 
o) z _[_ (6~aoaM/m(b))z re(b) (14) 

Since the force A is isotropic and has the statistical properties of white noise (~Ai,Aj = 
A=6ij, where A 2 depends on m), we use the condition 

m (~) < W} b)2 > : l "~ ( b ) ~ ( b ~ " ~,z,~,i ((o) do) = k T  

to then obtain A 2 : kT/~. 
have 

For the Brownian coefficient of self-diffusion, by definition we 

D ~b) = a~wi,~i (0) = Do,(M, D O - - k T / 6 a ~ o  a (15) 

(here, no tensor summation is performed over i). In connection with the assumptions made 
above, Eq. (15) must ultimately be regarded as sequential estimate of the Brownian self-dif- 
fusion coefficient. 

It should be emphasized that Brownian self-diffusion of particles is independent of 
the degree of development of pseudo-turbulence. However, the inverse is not true. In fact, 
pseudo-turbulent motion is determined by the work of the carrier flow on concentration fluc- 
tuations, and the kinetics of the formation and decay of these concentrations depends on the 
intensity not only of pseudo-turbulent self-diffusion, but also Brownian self-diffusion. 

Thus, the principal coefficients of pseudo-turbulent self-diffusion D(P) and D(P) = D(P) which 
II 22  33  

figure in the determination of the spectral density of the concentration fluctuations in [4] 

r(p) 
;6 

0 

(~) D(b) 
- -  I 

Do Do 

f ~,e qe ~o p o,4 P 

Fig. 1 Fig. 2 

Fig. I. Dependence of the introduced functions on the concen- 
tration of the suspension. 

Fig. 2. Dependences of the dimensionless coefficients of 
Brownian gradient diffusion (i) and self-diffusion (2) on the 
concentration of the suspension. 
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should be replaced by D (p) + D (b) and D (p) + D (b) respectivly. Strictly following the method in 
ii 22 

[ 4 ] ,  i n  t h e  c a s e  b e i n g  examined  we o b t a i n  t h e  be low e q u a t i o n s  f o r  t h e s e  c o e f f i c i e n t s :  

D]Vl ) D]]}au)Zn(v) S (9)[(1 - -  z) z Io 4- 2z (1 - -  z) Io -4- z2Id, 
- -  .t~22 

D•V) 
_ (au) 2 

22 o ,n(v) n(p), S (P) zZ (I~ - -  I~), 
~ ~ J l  1 - -  L]22J  

dp . ' 

t~dt n(v) D(O) S ~ 2 2  ~- pdl 
I n =  / z @ ? 2  ' ?2_ , z = - - ,  

Di] ) - - D %  ) d 

(16)  

these equations changing into the analogous equations in [4] at D (b) = 0 (when the determina- 
tion of ~ in (16) coincides with the determination in [4]).* 

The coefficients of Brownian and pseudo-turbulent gradient diffusion can be calculated 
by the method proposed and realized for dilute dispersions in [3]. In accordance with this 
method, the diffusion flux of particles is equal to the convective flux of settling particles 
under the condition that disperse phase and dispersion medium are acted upon by external 
forces equal to He~re and H/v when calculated per unit volume of the phases. Omitting the 
details of the calculations - which are completely analogous to those performed in [3] - we 
will present results for the coefficient of Brownian gradient diffusion in moderately concen- 
trated dispersions (for which Eqs. (3) are valid)): 

p dF (17) 
~0 (b) =____Do 

M do 

as well as results for principal values of the axisymmetric tensor of the coefficients of 
pseudo-turbulent gradient diffusion (the x I axis of the coordinate system being directed 
along the vector u): 

~)~f)= 1 P d . (Fm<wlV)2>)  - 2p d ( F i w ~ m ~ > )  a2dl (18)  
6 ~ 0 a  M dp 9M d 9 ~o ' 

where  t h e  f u n c t i o n  F i s  d e t e r m i n e d  f rom (8 )  and no t e n s o r  summat ion  i s  p e r f o r m e d  in  ( 1 8 ) .  

E q u a t i o n s  (18)  a r e  f o r m a l l y  o b t a i n e d  by r e p l a c i n g  kT by  m <w(~)w(~)> ,  a s  was done  e a r l i e r .  
3 ] 

The d e t a i l e d  s t u d y  o f  p s e u d o - t u r b u l e n t  d i f f u s i o n  i s  an i n d e p e n d e n t  p r o b l e m .  H e r e ,  t o  
i l l u s t r a t e  we p r e s e n t  o n l y  t h e  d e p e n d e n c e  on p o f  t h e  c o e f f i c i e n t s  D(b) /D0 and ..q)(b)/Do. For  
m o d e r a t e l y  c o n c e n t r a t e d  s u s p e n s i o n s ,  t h e  f u n c t i o n  M i s  d e t e r m i n e d  in  (3 )  and h a s  s i g n i f i c a n c e  
f o r  v a l u e s  o f  p t h a t  a r e  a p p r e c i a b l y  s m a l l e r  t h a n  0 . 4 .  To o b t a i n  q u a l i t a t i v e  r e s u l t s  f o r  t h e  
e n t i r e  r e g i o n  0 < p < p* o f  c o n c e n t r a t i o n ,  we a g a i n  u s e  t h e  f u n c t i o n  M = - ( 1  - p ) _ S / 2  a s  a 
c o n v e n i e n t  a p p r o x i m a t i o n .  The r e l a t i o n s  c o r r e s p o n d i n g  t o  t h i s  f u n c t i o n  a r e  shown in  F i g .  2. 
The c h a r a c t e r  o f  t h e  r e l a t i o n s  f o r  t h e  c o e f f i c i e n t s  o f  s e l f - d i f f u s i o n  and g r a d i e n t  d i f f u s i o n  
t u r n  o u t  t o  be  c o m p l e t e l y  d i f f e r e n t ,  as  was i n d i c a t e d  in  [3] and s e v e r a l  o t h e r  s t u d i e s  ( [ 1 2 ] ,  
f o r  e x a m p l e ) .  The i n c r e a s e  in  g0 (b) w i t h  an i n c r e a s e  in  c o n c e n t r a t i o n  i s  due t o  t h e  f a c t  
t h a t  t h e  e f f e c t s  a s s o c i a t e d  w i t h  t h e  e x c l u d e d  vo lume  f a c i l i t a t e  t h e  p e n e t r a t i o n  o f  p a r t i c l e s  
i n t o  r e g i o n s  where  t h e i r  c o n c e n t r a t i o n  i s  r e l a t i v e l y  low.  Meanwhi l e ,  t h i s  e f f e c t  t u r n s  o u t  
t o  be  g r e a t e r  t h a n  t h e  d r a g  e f f e c t  o f  t h e  p a r t i c l e s  in  c o n c e n t r a t e d  d i s p e r s i o n s .  

*The k i n e t i c s  o f  s p r e a d i n g  o f  t h e  c o n c e n t r a t i o n  f l u c t u a t i o n s  in  t h e  m e a n - s t a t i s t i c a l  s e n s e  
can  be d e s c r i b e d  by an e f f e c t i v e  d i f f u s i o n  e q u a t i o n  w i t h  a d i f f u s i o n  c o e f f i c i e n t  d e p e n d e n t  on 
the scale of the fluctuations. It is clear that the limiting value of this coefficient for 
small scales - when we are actually dealing with displacements of particles relative to their 
nearest neighbors - should coincide with the self-diffusion coefficient of the particles, 
while the limiting value for large scales should coincide with the coefficient of gradient 
diffusion. (The difference between these coefficients is discussed in [3, 12], for example). 
Since we are discussing pseudo-turbulence generated by the work of the carrier flow on small- 
scale fluctuation concentrations, it becomes obvious that only the coefficients of pseudo- 
turbulent self-diffusion - not the coefficients of gradient diffusion - figure in the deter- 
mination of the spectral density of these fluctuations in [4] and, thus, in (16). 
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In conclusion, let us make several observations. First of all, since the Perkins-Yevick 
theory cannot in principle describe a phase transition of the liquid-crystal type in a system 
of hard spheres, the theory cannot give the concentration p* of the close-packed state; this 
quantity must be assigned a priori on the basis of additional considerations. Forces asso- 
ciated with the direct contact interaction of particles (such as friction) may become impor- 
tant near a closely-packed region. As was noted in [4], this fact is not accounted for in 
the theory. 

Finally, the thermodynamic force in flows of suspensions and colloidal dispersions is 
heavily dependent on the chemical potential of the particles. Above, we considered only 
"geometric" interaction between particles, preventing their overlapping. In actual disper- 
sions, particles also interact as a result of short-range surface forces, the formation of 
diffuse electric layers near the charged surfaces of particles, dipole forces between mag- 
netized particles, etc. All these factors influence the chemical potential of the particles 
and, thus, the distribution of their concentration in flows and the properties of the flows. 
External fields acting on the dispersion also lead to changes in chemical potential. This 
opens up highly enticing possibilities for controlling the theological properties of disper- 
sions in flows of different types and for controlling flows by introducing electrolytes and 
surfacants, superimposing external electromagnetic fields, etc. These topics merit special 
attention. 

NOTATION 

a, particle radius; D, ~ coefficients of self-diffusion and gradient diffusion; Do, 
coefficient of Brownian diffusion of a single particle; d, do, d I, flows of the suspension, 
liquid, and particle material; F, G, J, L, M, functions of p determined in the text; f, phase 
interaction force; g , acceleration due to external body-force field; H, ,0 thermodynamic force 
acting on one particle and one molecule, respectively; k, Boltzmann constant; m, m0, mass of 
particle and molecule; N, N o , total number of particles and molecules; n, no, numerical con- 
centration of particles and molecules; P, pressure of gas of hard spheres; p, pressure of 
liquid; QN, configurational integral of gas of hard spheres referred to vN; S, function from 
(16); T, temperature; u = v -w ; V, volume of system; v, w , mean velocities of the liquid 
and disperse phase; w ', fluctuation velocity of particle; v, v 0, volume of particle and mole- 
cule; z, parameter introduced in (16); dZ, random measure; ~, angle of inclination of channel 
to the horizontal; X, parameter introduced in (16); e -- 1 -- p; ~, ~0, viscosity of suspension 
and homogeneous liquid; H, potential of external body-force field; p, volume concentration 
of particles; ~, ~0, chemical potential of particles and molecules; ~, spectral density; ~, 
frequency. The superscripts (b) and (p) denote quantities pertaining to Brownian and pseudo- 
turbulent motion; the brackets denote averaging. 
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